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The strange attractor for maps of the circle at criticality has been shown to be 
characterized by a remarkable infinite set of exponents. This characterization by 
an infinite set of exponents has become known as the "multifractal" approach. 
The present paper reformulates the multifractal properties of the strange attrac- 
tor in a way more akin to critical phenomena. This new approach allows one 
to study the universal properties of both the critical point and of its vicinity 
within the same framework, and it allows universal properties to be extracted 
from experimental data in a straightforward manner. Obtaining Feigenbaum's 
scaling function from the experimental data is, by contrast, much more difficult. 
In addition to the infinite set of exponents, universal amplitude ratios here 
appear naturally. To study the crossover region near criticality, a "correlation 
time," which plays a role analogous to the "correlation length" in critical 
phenomena, is introduced. This new approach is based on the introduction of 
a joint probability distribution for the positive integer moments of the closest- 
return distances. This joint probability distribution is physically motivated by 
the large fluctuations of the multifractal moments with respect to the choice of 
origin. The joint probability distribution has scaling properties analogous to 
those of the free energy close to a critical point. 

KEY WORDS: Onset of chaos; circle map; quasiperiodic route to chaos; 
multifractals; infinite set of exponents; critical phenomena; universality. 
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These properties are understood through renormalization group con- 
cepts.(2~ At criticality, there are two ways to emphasize universal properties. 
First, there are quantities such as Feigenbaum's scaling function, which 
characterizes locally the strange attractor. However, as underlined in ref. 3, 
since Feigenbaum's scaling function is everywhere discontinuous, its 
measurement is very sensitive to noise. By contrast to this local approach, 
there is a global way to look at the problem by averaging quantities along 
a trajectory. This is the multifractal approach, which, by contrast to the 
previous one, concentrates on smooth functions, namely on a continuous 
infinite set of exponents. 

The traditional approach to scaling is based instead on the paradigm 
of critical phenomena. In this context also, scaling is understood through 
renormalization group concepts. However, the set of exponents is discrete, 
and, in general, only a few are experimentally accessible (For exceptions, 
see, for example, ref. 4.) Universal properties, on the other hand, are 
numerous. There are not only universal exponents, but also universal 
amplitude ratios and crossover functions. 

The multifractal approach and critical phenomena have, up to now, 
been considered as quite different, (5) even though the multifractal problem 
is often cast in the language of a "thermodynamic formalism. ''(5) In the 
present paper, we wish to show how to obtain the universal multifractal 
properties of the strange attractors through a formalism which is as close 
as possible to the formalism of critical phenomena, and different from, but 
related to, the standard thermodynamic formalism. In particular, quantities 
leading to the exponents z(q) play a role in our approach, but only the 
positive integer values of q are shown to be of interest. Furthermore, the 
Legendre transform of the r(q), the f(c~) function, (5~ does not play any 
special role. 

There are other physical systems where the multifractal approach has 
been extensively used (see ref. 6 for a review). A typical list includes, for 
example, percolation, localization, and diffusion-limited aggregation. In the 
context of percolation, we have discussed extensively the analogies between 
the multifractal character and the critical phenomena approachJ 7~ We 
believe that looking at multifractal properties for the circle map from the 
point of view of critical phenomena not only provides a framework which 
is unified, but also one which is very natural from the point of view of 
experimental measurements. Furthermore, the same approach is useful not 
only at the critical point, but also in its vicinity, in other words, it allows 
one to study universal crossover behavior. 

In drawing analogies with critical phenomena and establishing the 
appropriate framework (see ref. 8; see ref. 9 for early versions of this work), 
we answer the following questions: (i) Do we need a continuous set of 
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exponents to characterize the critical properties of maps of the circle? (ii) 
How does the usual multifractal characterization depend on the starting 
point of the iteration? (iii) How can universal properties of the trajectory 
be accessed other than through multifractal exponents or through Feigen- 
baum's scaling function? In standard critical phenomena, it is known that 
in addition to exponents, universal ratios also characterize criticality and it 
would be useful to compute the corresponding quantities in the context of 
dynamical systems. (iv) How can the crossover from the critical region be 
characterized in the multifractal framework? Our approach should provide 
useful methods to characterize universal quantities in the neighborhood of 
the critical point. 

The following, then, shows that the multifractal structure of strange 
attractors for quasiperiodic systems involves universal quantities analogous 
to universal scaling functions in critical phenomena. These functions are 
characteristic of the fixed point of the functional renormalization group for 
maps of the circle with a cubic inflection point, (2) so that this approach is 
sufficiently general to consider, from a unified point of view, the system at 
criticality and in the crossover region. Under iterations, at criticality, of 
one point chosen at random, the universal properties of the trajectory can 
be characterized by a universal probability distribution which plays a role 
analogous to the singular part of the free energy in thermodynamic critical 
phenomena. This probability distribution is the joint probability distribu- 
tion for the positive integer moments of the closest-return distances. Renor- 
realization group arguments (1~ and proofs of some properties, such as the 
fact that the sample probability distribution for the starting point is not 
relevant, are detailed in a companion paper, which will be refered as II. 
The approach of the present paper (I) is descriptive. It should clarify both 
the analogies with critical phenomena and the data analysis most 
appropriate to these analogies. 

The following section recalls the multifractal properties of maps of the 
circle and sets the notations. Section 3 discusses the variables which allow 
one to make connection with critical phenomena. Subsequently, Section 4 
describes the fluctuations of the multifractal "moments" with respect to the 
starting point of the series: It is shown that at the critical point, these fluc- 
tuations can be characterized by nontrivial functions whose nonstrous fluc- 
tuations with respect to the starting point of the series lead one to adopt 
a probabilistic point of view by choosing the starting point as random. 
These fluctuations are demonstrated to be independent of the time scale at 
which the system is probed. In Section 5.1 a joint probability distribution 
for the moments of the closest-return distances is proposed to characterize 
the multifractal properties. This joint probability distribution is inde- 
pendent of the probability distribution of the starting point, is universal, 
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and contains all the hierarchy of critical exponents. In Section 5.2 the 
neighborhood of the critical region is considered by defining the analog of 
a correlation length. As the control parameters, defined in Section 2, are 
varied to approach the critical point along the two eigendirections of the 
renormalization group, this unique "correlation time" controls the fluctua- 
tions of all multifractal moments, irrespective of their order. The results of 
Section 5.1 are thus generalized to include the crossover to the subcritical 
region. In the conclusion, Section 6, the preceding results are discussed in 
connection with other work, and suggestions for extensions are given. 

2. K N O W N  PROPERTIES OF M A P S  OF THE CIRCLE; 
N O T A T I O N  A N D  M O T I V A T I O N  

A general approach in dynamical systems consists in studying motion 
in phase space by means of maps instead of nonlinear differential equa- 
tions. Quasiperiodic systems refer generically to systems where resonance 
effects between two nonlinearly coupled oscillators play a fundamental role 
in driving the system to a chaotic regime. (1~ In the limit of an infinite 
dissipation and in the nonchaotic regime, the motion in phase space is 
concentrated on a two-dimensional torus. By taking the Poincar6 section, 
the system can be analyzed by maps of the circle onto itself. An example, 
due to Arnold, of such a map is 

K 
0~+ 1 = f(0,)  - 0, + s - ~ sin(2~0,) ( la)  

where for a general map of the circle, f(Oi+ 1 ) = f ( 0 i ) +  1, and where s 
and K will be called control parameters: f2 is the bare winding number and 
corresponds to the ratio of two frequencies, while K sets the level of non- 
linearity. Alternatively, the mean winding number p (or the period P) and 
K can thus also be chosen as characteristic parameters of the dynamics. 
However, in this case, one point of the orbit has to be specified to uniquely 
define this orbit, since p and K correspond to a locking interval for f2 
(ref. 11; for a discussion on the 

The hypothesis is that 
system, the trajectory in phase 
iterates of a starting point. 
limn ~ ~ (0 i+n -  Oi)/n], taken 

locking intervals, see ref. 12). 
Eq. (1) represents the dynamics of the 
space being characterized by the successive 
For a mean rotation number p [ p -  

as a rational number, the trajectory is 
periodic. Otherwise, when p is irrational, the successive iterates cover the 
circle in a dense way and P is infinite. 

In the quasiperiodic framework, the appearance of a chatotic regime is 
concomitant with the loss of invertibility of Eq. (1) (or an equivalent map). 
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Referring the reader to a general reference for this point, ~ we now recall 
the main properties of maps of the circle at the critical point corresponding 
to a mean rotation number equal to the golden mean [a  = ( x f 5 -  1)/2]. 

Consider the suncritical region for maps such as Eq. (1). This is 
defined as the region of the parameter space where periodic orbits of 
rational period P exist for finite nonoverlapping intervals of f2 (locking 
intervals). As K is varied, these locking intervals sweep a set with Cantor- 
like structures which are usually referred to as Arnold tongues. As the 
control parameters are set to a critical value, the system is just on the bor- 
derline where overlapping between the different locking intervals can take 
place. In the mathematical literature this line is referred to as the critical 
line and corresponds to the line K =  1 in Fig. 1. For  the map of Eq. (la), 
the critical bare winding number which corresponds to a golden-mean 
winding number (rotation number) is f~c(1) -- 0.606661063569 .... 

Universal properties of maps of the circle with a cubic inflection point 
are described by the functional renormalization group of Feigenbaum et  al. 

1 

e=o- 

/ 

_c). 

Fig. 1. Schematic "phase diagram" for the map (la) in the space of parameters g? and K. The 
arrowed lines correspond to the two unstable eigendirections of the renormalization group 
analysis. The thick curve corresponds to an irrational winding number a. Under iteration of 
the renormalization group, this line is invariant. It joins the unstable fixed point describing the 
transition to chaos on the line K =  1 to the trivial pure rotation fixed point at K = 0 .  By 
analogy with critical phenomena, we refer to this line as the "discontinuity line." Two "Arnold 
tongues" corresponding to mean winding numbers Fo/Fn+I and F~_I/F, are also schemati- 
cally indicated. For K equal to its critical value ( K =  1), the system is "phase locked" for the 
open interval of 12 contained between the edges of the tongue ( K =  1). Under iterations of the 
renormalization group, one flows away from the unstable fixed point while jumping alter- 
natively across the discontinuity line from one tongue at a rational approximant of the golden 
mean to another. When this "phase diagram" is expressed as a function of the variables P 
(period or mean winding number) and K instead of ,Q and K, the statistical description given 
by Eq. (13) becomes more natural. 
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and of Rand et  al. (21 Hereafter, we shall refer to the latter formulation of 
the problem. Universality here means that the properties apply to a wide 
class of maps of the circle with a cubic inflection point at criticality. For 
example, we use in the sequel the map defined by 

O i + 1 = O i + 12 - K/2~r[  s in(  2rcO ~) + 0.2 sin(6~0~)] ( lb)  

where the critical behavior for a rotation number equal to the golden mean 
is obtained for 12=0.60972055339196 .... K=0.625.  The map (lb)  has a 
"phase diagram" similar to the one we just recalled for Eq. (la). 

As usual, the renormalization group equations can be viewed as a 
mapping in parameter space and, restricting ourselves to the (12, K) plane, 
the two unstable eigendirections are (i) the line K =  K,. and (ii) in the 
subcritical region, a curve 12=12c(K) corresponding to a mean rotation 
number equal to (z) ty. On the line K =  Kc, there is an open interval for s 
corresponding to a rational mean winding number. In that case the trajec- 
tory is periodic/11) By analogy with phase transitions, the line g2 = 12c(K) 
which, under renormalization, flows to a trivial fixed point (a pure irrational 
rotation with K =  0) will hereafter be referred to as the discontinuity line. 
As the renormalization group transformation is iterated in parameter 
space, one jumps alternatively across this line from one Arnold tongue to 
another. (2) These regions of the 12 Kplane give the periodic orbits whose 
successive periods are the series of the rational approximations for an irra- 
tional mean winding number. In the case of the golden mean, the Fibonacci 
series defined by 

Fo=0 ;  F I = I ;  F , ~ = F , , _ I + F , ,  2 (2) 

give the rational approximants, since 

F n  1 
G F n = F  n ~-( - -c r )" ;  e =  lim - -  (3) 

n ~ o o  r n 

At criticality, where p is irrational, the renormalization group equa- 
tions show that the trajectory possesses universal scaling properties. These 
properties were first studied for the scaling of the distance between the 
origin and its closest iterate (2) as a function of the number of iterations. At 
the golden-mean winding number, the closest iterate changes every time the 
map is iterated a number of times which is equal to a Fibonacci number 
(see ref. 13 for a discussion of this point). The Fibonacci numbers then set 
the closest-return iterates, and they also approximate the golden mean, and 
hence they are a natural clock for these closest-return distances along the 
trajectory. To emphasize these properties, the same analysis was applied 
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by Halsey etal.  (5) to all distances between one point and its iterates at 
successive Fibonacci time scales. Reference 1 shows that these are charac- 
terized by the scaling behavior 

[f(F"l(xi) -- xilq ~ AqF2~ (q) (4) 
l <~ i <~ Fn + I 

where ~ stands for "is asymptotically equal to," Aq is an amplitude which 
depends weakly on q (it is set equal to unity in ref. 5), and where ~(q) is 
a nonlinear function of q. From now on, the caret sign denotes the function 
modulo one. Note that, by definition, fc(F")(x)-- f(F"~(x)--Fn_I.  Also, xi 
labels the ( i - 1 ) t h  iterate of Xx, 

xi=_f(i  1)(xl); f ( i ~ = f o f o f o f  . . . .  f; i t imes  (5) 

and the starting point of the series x~ is taken as the origin, where the cubic 
inflection point is located. Jf(F~(Xi)--X~I is a distance, and for F,  a 
Fibonacci number, it is the smallest distance between x~ and one of its 
iterates up to Fn. Hence the name "closest-return distances." The expres- 
sion (4) will be called a multifractal "moment," for reasons which will 
appear more clearly in the next section. 

To motivate definition (4) a bit more, consider an Fn +1 periodic orbit. 
As suggested by (4), draw an arc between the first point and its Fnth 
iterate, repeating the procedure for the first F n+l iterates. The set of arcs 
then covers the circle without overlap (Fig. 2a). When the mean winding 
number is irrational, the same procedure can be applied with an arbitrary 
Fn, but, in that case, there always exist small gaps in the covering (Fig. 2b). 
Note that when one varies the pure rotation number on a locking interval 
which is on the critical line K =  1, the closest-return distances of the finite 
series of points are changed, and this change is nonuniform along the tra- 
jectory (Fig. 2c). On the line g2 = g2c(K), on the other hand, corresponding 
to an irrational winding number, the starting point of the series should be 
arbitrary because there is no periodic point (stable or unstable). 

In the work of Halsey et al., (5~ the properties of (4) were studied only 
at the critical point g? = s and, furthermore, the starting point of the 
series was always taken as the origin defined above. We will see in what 
follows that when the starting point xl is not the origin, the amplitudes in 
Eq. (4) become functions Aq(fn,  x I ) of the starting point Xl and of the time 
scale F~, which are highly irregular but of bounded variation. While the 
scaling properties of the multifractal moments are given by the envelope 
F2~ (~ interesting universal properties are also hidden in these amplitudes. 
The characterization of these universal properties is a strong motivation for 
the present work. 
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The Legendre transform of the function v(q), the so-called f( ,)  func- 
tion, does not play any special role in our analysis: Since the Legendre 
transform is an involution, knowledge of either function completely 
specifies the other. For the sake of completeness, however, the f(~) function 
is introduced in the Appendix from a point of view closer in spirit to our 
approach. 

3= F3+1 
(b) ~ ,  

4= F3 -I- 2 

(c) 6 

3 

7 

Fig. 2. Geometrical illustration of the distances entering the definition (10) of the multi- 
fractaI moments  for the periodic and the irrational cases. (a) The first 8 iterates of the origin 
for the map ( la)  when the system is periodic with a period F6 = 8. Note that the set of arcs 
between an iterate and the following F 5 = 5th one covers the circle without overlaps. Note that 
the arc between the 4th one covers the circle without overlaps. Note that the arc between the 
4th iterate and the 9th one, for example, is between the 4th and the first iterate [9 Mod(8)] .  
(b) The first four iterates of the origin when the control parameters are at their critical value 
for the golden-mean winding number, In this case, F ,  = 2 in Eq. (10), the closest-return distan- 
ces are between a point and the second iterate that follows. Only the arcs with arrows are 
taken into account by the definition (10). The whole circle is not covered by these arcs. 
(c) Same as (a), except that the starting point is not the origin (The corresponding bare 
winding number  ~2 is different). The circles (c) and (a) cannot be superposed by only a global 
rotation. 
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3. THE POSITIVE INTEGER M O M E N T S  CHARACTERIZE 
COMPLETELY THE DISTRIBUTION OF THE 
CLOSEST-RETURN DISTANCES 

As mentioned in the introduction, multifractality is not a property 
which manifests itself only in the case of dynamical systems. For percolat- 
ing networks, the positive integer moments of the current distribution are 
the ones which are accessible through electrical noise measurements. (~4) In 
a manner analogous to that used for the corresponding quantities in 
the percolation case, (7) let us introduce the distribution of closest-return 
distances P(x~, l), whose moments are proportional to Eq. (4): 

1 
~(XI, l)= ~ 6(l-If(F")(Xi)--Xi]) (6) 

Fn+l l<_i<~Fn+l 

The positive integer moments suffice to characterize completely the dis- 
tribution P of Eq. (6). This follows directly from the BernsteimHausdorff 
reconstruction theorem (151 of probability theory because the closest-return 
distances l are concentrated on a finite interval. In the present case, we nor- 
malize the circle to unity so that l is in the interval ]0, 1 ]. This theorem 
can also be proved for the case of delta function distributions such as (6). 
The more precise statement of convergence is that the distribution 
PN(Xl, l) obtained from the N first integer moments by (the double bar 
refers to quantities averaged with respect to the original distribution P) 

Pu(Xl,l)= 2 k!(N_k)! lk(1- l )  u kb l -  (7) 
k = 0  

converges to the original probability distribution. This convergence is 
defined in the sense of distributions, namely, 

lim dl PN(Xl, I)/(l) = d l  P(xl,  l)/(l) (8) 
N ~  

where / i s  a continuous function, and where the right-hand side is assumed 
to exist [Eq. (4) corresponds to the choice/ '(/) = lqF~+ 1]. 

In other words, all the information can be extracted from the positive 
integer moments, including the value of the noninteger or of the negative 
moments. This makes a bridge with critical phenomena, where only a 
countable set of operators is considered (relevant and irrelevant). The 
Bernstein-Hausdorff theorem provides us with a mathematically well- 
defined tool to compute all the moments from the positive integer ones. 
This statement is physically important (7) in the case of noisy percolating 
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networks where there exists a probe which couples selectively to different 
positive integer moments, and where these positive integer moments are the 
only quantities observable through macroscopic noise measurements. (~4) 
From now on, only the positive integer moments are considered in this 
paper. In practice, however, if other moments are needed, it may be easier 
to compute them directly, since the theorem applies only if the exact values 
of the moments are known. Nevertheless, the above result shows that the 
continuous dependence on q in Eq. (4) is not an insuperable difficulty to 
make analogies with critical phenomena. As a consequence, only the 
positive integer moments are considered. 

4. F L U C T U A T I O N S  OF THE M O M E N T S  W I T H  RESPECT TO 
THE S T A R T I N G  POINT 

Experimentally, one does not have a direct access to the universal 
function of the fixed-point equation. This implies that the origin (cubic 
inflection point) has to be determined numerically from the experimental 
data and therefore is subjected to uncertainties. In this section, we consider 
only the critical point. There, the rotation number p is irrational and the 
starting point of the series can be a priori arbitrarily chosen. One is there- 
fore led to ask how the multifractal moments (4) are, in this case, sensitive 
to small variations of the starting point. 

Anticipating what follows, we define the following set of functions: 

q6 q(F., x,)  ==- Mu(F .,  x ,) /  << Mq(Fn, xl)>} (9) 

with the moments Mq defined by 

1 
= ~ If(F")(xi)--xilq=Aq(F,, xl)Fn-+(~ )-1 (10) 

mq(F , , x l )  Fn+l l<~i<~F,+, 

The brackets in Eq. (9) refer to an average with respect to the starting 
point. That type of average is discussed later in this section. In Eqs. (9) and 
(10), we have explicitly included the F ,+I  dependence, which should also 
have appeared in the arguments of P in the previous section. 

Figures 3a and 3b illustrate the variations of qJq(Fn, Xl) for q = 2 and 
Xl in the interval [0, 1] for the map of Eq. (1). By increasing the time scale 
at which the system is probed (n = 8 and 11, respectively), these functions 
vary over the same range, but they become highly irregular objects. One 
concludes from these numerical results that: (i) As expected, the scaling 
behavior characterized by z(q) is independent of the starting point, and (ii) 
In the asymptotic limit (n ~ oe), one has to face erratic changes of the 
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amplitudes Aq(F,, x~) in Eq. (10) of the moments even for an infinitesimal 
shift of the starting point. To characterize the scale of the fluctuations, 
Fig. 4 shows the normalized root mean square, [ ( ( y ~ ) -  (y)Z)/(y)2]~/2, 
with y = (~q(F,, x~), as a function of q. Intuitively, the high-order moments 
are sensitive to a small part of the trajectory and therefore they are more 
sensitive to small variations of the starting point. 

Despite the large variations in Figs. 3a and 3b, the multifractal 
moments (10) have invariance properties under the map when n goes to 
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Fig .  3. I l l u s t r a t i o n  o f  t he  f l u c t u a t i o n s  o f  t h e  m u l t i f r a c t a l  m o m e n t s  as  a f u n c t i o n  o f  t he  

s t a r t i n g  p o i n t  o f  t he  i t e r a t i o n s � 9  (A)  P l o t  o f  t h e  f u n c t i o n  4 q ( F , , x ~ )  fo r  q = 2 ,  n = 8 ,  as  a 

f u n c t i o n  o f  x~.  (B)  P l o t  o f  t he  f u n c t i o n  O q ( F , ,  x l )  f o r  q = 2, n -  11, as  a f u n c t i o n  o f  x 1. N o t e ,  

b y  c o m p a r i n g  w i t h  (A) ,  t h a t  t h e  r a n g e  o f  v a r i a t i o n  o f  t h e  f u n c t i o n  4 q ( F , ,  x l )  is r o u g h l y  the  

s a m e  as  in  t he  c a s e  n = 8, b u t  t h a t  t he  c h a n g e s  a r e  m o r e  a b r u p t  as  a f u n c t i o n  o f  x l .  
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Figure 4. Variance [ ( ( y 2 )  _ (y)2)/~y)211/2 of the multifractal moments as a function of 
the order q of the moment. The average is over the starting point (taken at random with a 

uniform distribution) and y ~ Mq(Fn, xl). 

infinity. Indeed, let us consider their variation when the starting point is 
taken as f(xl) instead of x~" 

Mq(Fn, Xl) = Mq(F., f(xl)) 

1 
-]--'f n+ 1 { If(F")(xl)-- Xllq-- If~(F~)(XF"+* + I)-- XF"''+ '[q } 

( l l a )  

From this equation, it is shown in Appendix A of the next paper that the 
multifractal moments are invariant under the dynamics of the map, i.e., 

lim {Mq(F,, xl) = Mq(Fn, f ( x l ) ) }  (1 Ib) 

This can be heuristically demonstrated if one remarks that Mq(Fn, xl) dif- 
fers from Mq(Fn,f(xl)) by a term which goes exponentially to zero when 
n becomes infinity (see Appendix A of II for a more detailed discussion). 
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This statement holds as long as q takes finite values, since in that case the 
multifractal moments are not dominated by the end points of the multi- 
fractal series and the last two terms of Eq. ( l l a )  can be discarded. 

In Fig. 5, we have plotted the ratios of two multifractal moments taken 
at points Xl and f ( x l )  as a function of the "finite size n" to illustrate 
numerically the invariance property (l lb).  On a log plot, the curve tends 
rapidly to a straight line, thereby corroborating that, within exponentially 
small corrections, the multifractal moments are invariant under the 
dynamics. We stress, however, that the multifractal moments normalized 
by their leading scaling behavior [i.e., the functions (kq(Fn, xl)  in Eq. (9), 
or equivalently the amplitudes Aq(Fn, Xl )  in Eq. (10)] do not necessarly 
possess a well-defined limit for a given x~ as n goes to infinity. And indeed, 
we could not numerically see signs of convergence for n ~< 22, but the varia- 
tions at fixed xl and for different F,  do remain bounded. 

From the invariance property ( l lb) ,  one can show that the multi- 
fractal moments, averaged with respect to the starting point x~, are 
independent of the a priori probability distribution with which x~ is drawn. 
A more mathematical discussion of this statement can be found in 
Appendix A of the next paper. We did, moreover, verify numerically that 
the averaged multifractal moments are indeed independent of the a priori 
probability for the starting point xl. Table I reports the results obtained for 
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Fig. 5. Invariance [see Eq. ( l l b ) ]  of the multifractal moments  under the map  as n goes to 
infinity. The curve corresponds to l.O-Mq(F,,xl)/Mq(F,~,f(xO) as a function of n for 
x I = 0.2. As n goes to infinity, the curve tends rapidly to an exponentially dcreasing function 
of n, thereby indicating that at the critical golden-mean winding number  the multifractal 
moments  are invariant under the m a p f  [of Eq. ( la) ] .  
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Table I. 

Fourcade and T r e m b l a y  

Averaged Values of the M u l t i f r a c t a l  M o m e n t s  at  K=Kc~ Q = f l  c, 
for q - - l ,  2, 3, 4, a Coarse-Graining Scale F 8, and f o r  

D i f f e r e n t  Probability Distributions of the S t a r t i n g  Po in t  

Mult i f rac ta l  momen t s  ~ 

q (1) (2) (3) (4) (5) 

1 7.21 x 10 -1 7 .35x  10 -~ 7.46 x 10 -~ 7.21 x 10 - j  7.23 x 10 -~ 
2 1.74 • 10 -2 1.76 x 10 2 1.78 x 10 -2 1.74 • 10 -2 1.75 x 10 -2 

3 7 . 1 2 x 1 0  4 6 . 9 0 x 1 0 - 4  6 . 7 3 x 1 0  4 7 . 1 2 x 1 0  4 7 . 1 1 x 1 0 - 4  

a Results  (1) refer to the uniform dis t r ibut ion;  (2) and  (3) denote  the values ob ta ined  when  

the s ta r t ing  point  is d r awn  with a p robab i l i ty  densi ty  P(x~)~ x~ TM with  c~ = 2 and 3, respec- 

tively; and  (4) and  (5) refer to a p robab i l i ty  d i s t r ibu t ion  of the type P(x)~x(~+t~/~e-X ~/~, 
with ~ = 1, 2. 

different a priori probabilities and corroborates this invariance property 
within a numerical accuracy due to the relatively small value of n (=  8) 
used. 

As a conclusion of this section, let us remark again that the multi- 
fractal properties of maps of the circle at criticality share with critical 
phenomena the property of non-self-averaging. Indeed, Eq. ( l lb )  and the 
fact that ~bq(Fn, xl) is not independent of xl imply that for any of the 
Oq(fn, X l )  , the time average of (~q(Fn, xt), defined as 

I ~oi= Oq(Fn'f(i)(xl))l//(l+ l) (12) 

and the ensemble average {defined as the value of Oq(F,, Xl) averaged over 
Xl in the interval [0, 1] }, do not coincide in the limit where l is arbitrarily 
large but less than Fn. Fundamentally, this comes from the existence of the 
correlation time discussed in Section 5.2.1: For times less than the correla- 
tion time, no self-averaging occurs and at a critical point that correlation 
time is infinite. 

5. THE U N I V E R S A L  PROBABILITY D ISTRIBUT IONS 

At criticality, the mean rotation number is irrational, so that it does 
not seem natural to privilege any particular point or set of points. 
However, it has been shown in the preceding section that the amplitudes 
Aq(Fn, X l )  of the multifractal moments exhibit large variations as a func- 
tion of the starting point of the iteration xl.  This was summarized by the 
properties of the function Oq(F,, xl). A natural way, then, to characterize 
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the curves (~q(F,, Xl) SO that they will be useful for experiments is to treat 
their dependence on Xl from a probabilistic point of view. We consider the 
positive integer moments of Section 2 as a set of random variables. The a 
priori probabilities that determine the statistical ensemble are those that we 
choose for the starting point of the iterations. We have checked numerically 
and demonstrated analytically (in Appendix A of II) that the choice of this 
a priori probability is to a very large extent irrelevant. 

From this point of view, then, let us consider the joint probability dis- 
tribution ~ for the positive integer moments. This function depends on the 
control parameters as well as on the time scale at which the system is 
probed IF, in Eq. (10)]. Anticipating what follows, we take K, the non- 
linearity parameter, and P, the period of the map, as the parameters. At 
criticality, P is infinite and K is set to its critical value Kc. The object of 
this section is to show that the following Ansatz is correct: ~ is a universal 
function, independent of the map chosen on the critical manifold, and it 
obeys the scaling equation 

~(aoMo, aiM1 ,..., aqMq,...; aK(K-- Kc), apP, apF,) 
= ~  z(O) 1/~ -- ' r (1)--  1 . , ~ -- 'c(q)--  1 

x ~(aoMo/2 ,(o) i, a~ M1/2 -*(*)- ~,..., aqMq/2-~{q)- ~,...; 

ax(K-Kc)/)o 1/~; apP/2; aeF,/2) (13) 

where the ai are particular to the map considered. These coefficients are 
analogous to nonuniversal metric factors in critical phenomena. (17) These 
metric factors are identical for the period P and for F, because they are 
both measured in the same units. Equation (13) applies to joint probability 
distributions of an arbitrarily large number of positive integer moments. 
Note that because positive integer moments suffice to characterize P, we 
concentrate on those. Since the support of the Mq themselves is finite as 
well, we will discuss below the positive integer moments of the Mq. (The 
nomenclature "moments of multifractal moments" is unfortunately imposed 
by circumstances). 

Equation (13) is the cornerstone of our approach. In other words, it 
contains as special cases all the universal quantities which can be measured 
from our point of view. It exhibits the infinite set of exponents, as well as 
gap scaling (18) [see Eq. (19) below] for cumulants of the variables Mq. 
Also, it describes not only the critical point, but also its approach through 
changes of either or both of the control parameters K, P, and the "finite 
size" parameter F,. Finally, note that the role as well as the scaling proper- 
ties of ~ are similar to those of the free energy in critical phenomena, hence 
the similarity in point of view. 
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To show the validity of Eq. (13) explicitly, and to demonstrate which 
of its special cases one would measure in practice, we consider various 
limiting cases in the following subsections, first at criticality, then in the 
crossover region. 

5.1. At  the Crit ical Value of the Control  Parameters 

A direct numerical verification of Eq. (13) in its full generality is not 
workable. Therefore, we first deal with partial probability distributions for 
one variable Mq a t  a time. The set of these distributions does not contain 
information about cross-correlations. This is studied by means of universal 
ratios in the second part of this section. 

Let us consider the question of universality. Figure 6 shows the 
cumulative probability distribution for the variable 

Oq(Fn, x I )~-- Mq(F~, xl)/  (( Mq(Fn, x I ))) (14) 

for q =  1, 2, 3. The normalization factor appearing in Eq. (14) gets rid of 
the nonuniversal factor aq. To characterize the scaling properties of these 
distributions, the system is probed at different time scales (curves A and B 
on each plot) by varying the Fibonacci number entering in Eq. (13). Also, 
the map defined in Eq. (lb) allows us to test the hypothesis of universality 
(curve C on each plot). For a given value of q, the curves have been shifted 
for clarity, but they are actually identical on the scale of the figures. The 
conclusions which follow are generalizable to any value of q: 

(i) The fluctuations of the normalized variables ~bq are independent 
of the time scale. In other words, there is no self-averaging for the moments 
defined by Eq. (14) or Eq. (10), even when n tends to infinity. This is the 
analog of the critical fluctuations at a continuous phase transition. 

(ii) The fluctuations are independent of the chosen map on the 
critical manifold (maps which belong to the same universality class). 

Having verified directly the scaling properties of Eq. (13) for one 
variable at a time, let us consider more general quantities which allow us 
to verify cross-correlations as well. These quantities are universal and scale 
independent, and play the same role as universal amplitude ratios in 
critical phenomena. More specifically, we consider the following ratios 
for averaged cumulants (denoted with double brackets): 

((Mq(Fn, Xl) k Mr(Fn, xl)l)) 
A(q, r; k,/)  = ~Mq(Fn, XI)))  k CMr(Fn, xl)))' (15) 
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The scale independence and universality of (15) follow automatically from 
Eq. (13). Indeed, let us first return to the simpler case of averaged 
moments, 

( (Mq) k ) = f (Mq) k ~q(aqMq; F~) dMq 

=a] l  k[F2~(q) 1]k... 

x f (aqMq/f  n ~(q) 1)k ~q(aqMq/Fn ~(q~ ' ;1)  

X d[aqMq/Fn ~(q) 1] (16) 

= aq l -k[ fn~(q  )- 1]k f uk~q(U; 1) du (17) 

where the limits of integration introduce only higher-order corrections to 
scaling, which have not been included. The integrand in Eq. (17) is a 
universal quantity and the particular character of the map appears only 
through the scale factors aq. By taking ratios with the mean values to 
eliminate the aq, one is led to 

( Mq(Fn, xl) k Mr(F~, xl)' ) ~ Llkl)l~q.r(U , 1); 1) du dv 
(18) 

(Mq(F, ,  x 1 ) )k (Mr( fn  ' xl ) ) '  =- [I U~q(U; 1 ) du] k [~ V~r(V; 1 ) dv]' 

which is indeed a universal quantity. By generalizing to ratios of 
cumulants, one deduces that the A(q, r; k, l) are universal quantities which 
also characterize the trajectory for the iterates. Table II reports numerical 
results when the map is either (la) or (lb) and demonstrates that they are 
independent of the time scale as well as of the map. We note in passing that 
the cumulant averages are very sensitive to the tails of the distributions and 
this explains the slight statistical fluctuations of the data, especially for 
large order of cumulant. As mentioned earlier, we have also checked that 
the above results are independent of the a priori distribution of the starting 
point. 

In closing this section, note that the scaling found in Eq. (17), 

( (Mq) k) ~ F .  k(~(q~+ l) (19) 

corresponds to what is known as "gap scaling" in critical phenomenaJ 18) 

5.2. Crossover from the Critical Region 

As mentioned above, to approach the critical point experimentally, 
one sets the mean rotation number equal to successive rational approxima- 
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tions of the golden mean. The following analysis characterizes the crossover 
between the region where fluctuations are critical and the region where 
they correspond to a pure rotation. The borderline between the two 
regimes corresponds to a unique characteristic time scale which is 
analogous to the correlation length in critical phenomena. The analysis is 
developed in the two eigendirections of the renormalization group. In 
Section 5.2.1 we give an operational definition of the correlation time, 
and in Section 5.2.2 we study specific functions and exhibit their universal 
crossover behavior at that characteristic time. 

Table II. Universal Ratios Defined by Eq. (15) ~ 

A(q, r; k, l) 

q, r; k, l I II 

1020 0.0100(2) 0.0101(2) 
1030 -7.2(1)10 -4 -7.0(2)10 4 
0202 0.0521(4) 0.0525(9) 
0203 -0.0051(2) -0.0051(1) 
0204 -0.0017(1) -0.0019(1) 
1211 0.0187(2) 0.0192(2) 
1221 -0.00117(5) 0.00119(4) 
1212 -0.00227(5) -0.00235(5) 
0302 0.172(1) 0.166(4) 
0303 -0.0075(5) -0.0074(5) 
0304 -0.036(1) -0.033(1) 
1311 0.0226(8) 0.0246(8) 
1321 0.0015(1) 0.0015(1) 
1312 -0.0037(2) 0.0033(2) 
0402 0.363(1) 0.363(1) 
0403 0.0262(5) 0.0262(6) 
0404 -0.186(3) -0.186(5) 
1411 0.0236(5) 0.0236(5) 
1412 -0.0320(5) -0.0320(8 ) 
2311 0.0867(7) 0.0870(9) 
2312 -0.0076(5) -0.0076(2) 
2321 -0.0064(5) -0.0065(5) 
2411 0.114(5) 0.114(6) 
2412 -0.0036(5) -0.027(5) 
2421 -0.0063(5) -0.0063(3) 
3411 0.244(1) 0.244(1) 

a Column I is for the map defined by ( la)  and column II for the 
map (lb).  The results are for F~o and 2 • 104 samples. The ratios 
computed for larger F. (we have checked n = 10-12) or for the 
above two maps are within the statistical uncertainty on the last 
digit (written in parentheses). 
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5.2.1. Def in i t ion  of  the  Character is t ic  T ime 

On the Discontinuity Line. On the discontinuity line, p is irrational. 
The map is not a pure rotation, but both problems are in fact topologically 
conjugate through a change of coordinates. The existence of the conjugacy 
in the subcritical region has been proven by Denjoy for maps with boun- 
ded variations (see ref. 13). The extension of this result to the critical line 
is due to Yoccoz. (1% In other words, the result of these works is that there 
exists a function h such that 

f o h = h o R ~ . ~  f =hoR~oh- '  (20) 

where the pure rotation R~ is defined by 

R~(x) = x + a (21) 

The key point is that this conjugacy to a pure rotation is differentiable 
everywhere but at the critical point. 

The intuitive definition of the characteristic time is the time (number 
of iterations) over which the iterates must be averaged before they appear 
to behave as if they were the iterates of a pure rotation. In the case where 
h is differentiable, the closest-return distances for f are asymptotically 
proportional to those of R~. Indeed, the closest-return distances of R~ for 
Fn iterations are aFn-  Fn_ 1 = - ( - a )  n, while for f ,  using Eq. (21), 

f F " ~ ( x )  - x = h o k~'~~ o h - ' ( x )  - x 

= h o [ h  l ( x ) -  ( - a ) " ] - x  

_ a) n dh(y) , n ~> 1 (22) 

Heuristically, the fluctuations of the moments of the closest-return 
distances (multifractal moments) disappear in the long-time limit where 
approximation (22) holds. This can be seen by substituting (22) in the 
sum (10) defining the multifractal moments and noting that the only 
dependence on iterates is through the derivative of the homeomorphism; 
since this is a smooth function of x, this x dependence is self-averaging on 
an irrational trajectory. One concludes that, below the critical line, the fluc- 
tuations of the moments with respect to the starting point vanish in the 
infinite-n limit. (The relationship between the multifractal moments and the 
conjugate, homeomorphism is discussed further in the next paper.) 

To characterize the time scale on which these fluctuations disappear, 
let us first define a set of "times" by the relation 

~q= ~ Fk[<{C)q(Fk, Xl)2))/(<~q(Fk, XI))) 2] (23) 
k>~l  
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Again the cumulant averages are taken over the starting point of the itera- 
tions. This is analogous to the definition of a correlation length for ther- 
modynamic systems. We show below that this quantity is worth defining 
because all the q dependence can be put into a prefactor, while the scaling 
behavior can be described by a q-independent exponent. 

When the map is a pure rotation ( K = 0 ) ,  all the ~q are identically 
equal to zero. As the K parameter is increased along the discontinuity line, 
the fluctuations are more and more important and the ~q diverge at criti- 
cality. Figure 7a demonstrates on a log-log plot that this divergence is 
characterized by a unique exponent, irrespective of the value of q. Thus, one 
defines a unique characteristic time ~ as 

~q ~ Cq~, Vq (24) 

where Cq is a bounded function of q. It is found numerically that ~ diverges 
near criticality as 

~ = ( 1 -  K/Kc) ~ (25) 

with v ~ 1.00, in good agreement with the renormalization group resul(2) 
v ~ 0.996 .... 

On the Critical Line. In the other unstable direction of the renor- 
realization group, K =  1, one considers periodic orbits of period P = Fn + 1. 
One can show that the set of arcs drawn between xi andf(F")(xi) cover the 
whole circle without overlap. Once the parameters K and f2 are chosen, the 
stable orbit is perfectly defined and the moments in Eq. (4) do not depend 
on the starting point, as long as it is chosen on this orbit. However, the 
system is in a phase-locking interval with a given mean rotation number 
(i.e., a given periodicity P = Fn + 1) for an open interval of f2. Since we take 
P instead of f2 as a variable in Eq. (13), it is natural to average the 
moments over the orbits corresponding to the different values of f2 for 
which the stable orbits of period P = Fn +1 exist. The definition equivalent 
to Eq. (23) is 

k = n + l  

~q~ 2 Fk[((~q(Fk, Xl)2))/((~q(F~c, x1))) 2] (26) 
k~>I 

where this time the average is over all possible orbits consistent with a 
given period (for each term, P = Fg +1). In that case, the only characteristic 
time is proportional to the period. Figure 7b demonstrates that all the ~q 
are indeed proportional to P and this defines again a unique characteristic 
time through 

~q = BqP (27) 

where Bq has a smooth variation with respect to q. 
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(a)so 2\ I ~ r-- ~ 

( b )  

ZO 30 4 0  5 0  
EN( p ) 

Fig. 7. Scaling of the characteristic time 4. (a) Logqog plot of the function ~q defined by 
Eq. (23) as a function of (1 - K) for various values of q. The lower curve is for q = 2, with q 
increasing up to the uppermost curve q = 7. The map considered is (la) when the critical point 
is approached along the discontinuity line where the mean winding number is equal to the 
golden mean. The curves become straight lines as K tends to its critical value K~ = 1, and the 
slope is independent of the order q of the moment. (b) Log-log plot of the function Cq defined 
by Eq. (26) as a function of the period of the orbit when the critical point is approached by 
changing the period P of orbits of length F~ along the critical line K = 1. For large values of 
P, the curves become a straight line whose slope is independent of q ( q -  1 7 as one moves 
from the lowest to the highest curve). 
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To conclude this section, one remarks that definitions (23) and (26) 
are equivalent. Indeed, when one changes s on a locking interval, a given 
stable point of the orbit changes continuously. Hence, averaging over s is 
like averaging over starting points. In the latter case, one must make sure 
that, for a given starting point, s is chosen so that this point belongs to 
a stable orbit. Since the statistical results are independent of the a priori 
distribution, averaging over locking intervals or over starting points gives 
the same results. At an irrational winding number (on the discontinuity 
line), however, the interval over which O can vary reduces to a single 
point, and there is an infinity of equivalent starting points. In both eigen- 
directions, then, the a priori probabilities are in a sense given by a random 
choice of starting point. Furthermore, the period P is equal to F~ on the 
discontinuity line, so that Eq. (26) does reduce to Eq. (23). 

In the general case, i.e., not along a particular eigendirection, Eq. (13) 
suggests that the characteristic time (correlation length) obeys the 
following scaling law: 

~- P ~ ( C ~ : ( 1  - -  K/K,.)/P i/v) ( 2 8 )  

where .~- is a universal crossover function, with C~ a nonuniversal scale 
factor. 

5.2.2. C r o s s o v e r  B e h a v i o r .  When the system is probed at shor- 
ter scales than the scale ~ defined above, the fluctuations are of the same 
order as in the critical regime. On the other hand, if the system is probed 
at scales larger than 4, the map is in fact equivalent to a pure rotation and 
the fluctuations disappear. The time scale over which the fluctuations are 
probed is given by the variable F,  appearing in Eq. (13). This is the same 
Fn as the one appearing in Eqs. (9) and (10), for example. It plays a role 
analogous to inverse wave vector or finite size in critical phenomena. The 
relative role of Fn and of the caracteristic time ~ is dramatically illustrated 
in Fig. 8, where F,  is varied so that the cumulative distribution for one of 
the moments crosses over from a critical-type behavior (F,/~ < I) to the 
step function corresponding to the pure rotation case (F,/~ > 1). 

In the general case, the averaged multifractal moments are described 
by crossover functions which depend on the control parameters K and P 
as well as on the time scale at which the system is probed F,  [see 
Eq. (10)]. As in Eq. (13), in the case of periodic orbits, this "finite-size" 
time scale is not necessarily related to the period. A consequence of 
Eq. (13) is that the multifractal moments behave as 

( M q ( K -  K~, P, F,,) ) - ; t  ~(ql- lCffq(aK(1 --K/Kc.)/; 1/,,, apP/2, apF,,/2 ) 

(29) 
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where ,  u p  to  a n  ove r a l l  f ac to r ,  t he  f u n c t i o n  ~q is a u n i v e r s a l  f u n c t i o n ,  b u t  

w h e r e  aK a n d  a p  a r e  p a r t i c u l a r  to  t he  m a p .  W h i l e  (29)  a lso  app l i e s  w i t h o u t  

t he  n e e d  to  a v e r a g e  w h e n  t he  s t a r t i n g  p o i n t  is t he  o r ig in ,  we p r e s e n t  t he  

r e su l t s  m a i n l y  for  t he  a v e r a g e d  case,  w h i c h  we be l i eve  is a l so  m o r e  r e l e v a n t  

e x p e r i m e n t a l l y .  W e  first  c h e c k  (29)  o n  t h e  c r i t i ca l  l ine  w h e r e  t he  m a p  is 

l o c k e d  w i t h  a p e r i o d  c o r r e s p o n d i n g  to  t he  F i b o n a c c i  n u m b e r s .  
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Fig. 8. Crossover of the cumulative probability distribution for the normalized moment 
~q(Fn, xl), for q =  3, as the coarsening time Fn is changed. The map is (la) with K=0.97 and 
f2(K) chosen so that we are on the discontinuity line where the mean rotation number is the 
golden mean (approximated here by FSF28 ). Curve A is for n = 8, curve B for n = 9, curve 
C for n = 10, curve and D for n = 11. Let ~ be the characteristic time defined by Eq. (23). Since 
FT/~ ,~ 1, curve A is similar to the critical point plots of Fig. 6, and since FH/~ ~> 1, the last 
curve D is like that for a pure rotation, where all distances entering the multifractal moments 
are identical and independent of the starting point. Under coarsening of the time scale Fn, one 
crosses over from critical fixed-point to trivial fixed-point behavior. 
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On the Critical Line K = K c = I  and P=Fn+I.  Equation (29) 
predicts that the moments of the closest-return distances scale as P-~(q) 1. 
Table III reports some numerical results for the superstable orbits. One 
notes in passing that this is an efficient algorithm to compute the set of r(q) 
in the large-q limit. We have checked that Eq. (29) also holds when the 
"finite-size" time scale is any of the Fibonacci numbers F~ such that 
Fk <F.+,  (=P). 

For K # I  a n d P = F n + l .  Eq. (29) implies that 

( M q ( K - K c ,  P, F,))  - (apP) -~(q) '~#e(b(1 -K/Kc) /P  -~/v, l, a) (30) 

where b = ai~/ap 1/~. Figure 9 verifies, for q =  3, the scaling prediction (30) 
that, for different F, = aP and (1 -K/Kc) ,  all points collapse on a single 
function ffq. Apart from the usual metric factors, the crossover scaling 
function is also universal, as can be checked in Fig. 9 by the fact that on 
a log-log plot the scaling functions for two different maps are identical 
within a shift of the origin. In the limit K goes to Kc, we recover in Fig. 9 
that the multifractal moment scales as P ~(q)-~. On the other hand, as P 
tends to infinity with F,/P = a and K fixed, one goes to a pure rotation as 
soon as F, is larger than ~. In that limit, the multifractal moment scales 
trivially as P q, which, through ~#q(y)=y~(~(q)+l q)implies the straight 
line of slope -0 .5  in Fig. 9. 

Scaling relations such as (29) or (30), which hold for averaged multi- 
fractal moments, or for multifractal moments of superstable orbits, should 
be accessible experimentally. The study of crossover presented here is a 

Table III. Numerical Values of the Exponent T(q )  a 

~(q) 

q I II III 

1 0.00 0.00 0.00 
2 0.83 0.84 0.81 
3 1.49 1.52 1.48 
4 2.07 2.10 2.07 
5 2.61 2.64 2.62 

aCalculated (1) at the critical point, using Eq. (4); (2) on 
superstable periodic orbits located on the K =  K~, line using 
Eq.(29) and P = F , .  1 for 6~<n~<13; and (3) using the 
analytic results obtained from the linear approximation 
(paper II). 
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Fig. 9. Universal crossover functions for the averaged multifractal moments ((Mq(K-K~, 
P=Fn+I, Fn))). The quantity ln[((Mq(K-K,,  P=F~+I, F,))) p,tq),l] is plotted versus 
l n [ ( 1 - K / K c )  v F,] for q =  3. For curve A, the map is that of Eq. ( la)  with Kc= 1 and for 
values of P=Fn+ 1 between FI4 and F18 with 2 x l 0 - 7 < ( K c - K ) < 1 0  -2. The different 
symbols correspond to different values of n and K. Averages are taken over 1000 starting 
points. All the points fall on a single curve, confirming the existence of the scaling function 
(30). For curve B, the map is that of Eq. (lb). The horizontal scale is shifted slightly, as 
indicated by the arrows. In this case, Kc=0.625 and n is chosen as n =  17, 18, 19. Note that 
curves A and B coincide with each other by a shift of the origin. This shows that the scaling 
function is universal aside from the nonuniversal constants b, and a S  (q) i times the scale 
factor of fro. [See Eq. (30).] 

more general alternative to the analysis of Arneodo and Holschneider, t2~ 
since it identifies the diverging reference time 3, takes into account both 
eigendirections, and proceeds through universal crossover functions instead 
of parameter-dependent exponents. 

6. C O N C L U S I O N  

The object of this paper was to point out that the multifractal proper- 
ties of maps of the circle can be basically cast in the language of critical 
phenomena. In this conclusion, we discuss our results in connection with 
other work and suggest extensions. 

At criticality, the fluctuations of the moments of the closest-return dis- 
tances (multifractal moments) as a function of the starting point of the 
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iteration have been shown to be universal in the renormalization group 
sense: They are scale independent and are a universal characteristic of all 
the maps on the critical manifold. Multifractal properties of maps of the 
circle which are a direct consequence of the functional renormalization 
group of Rand et al. (see next paper) are thus characterized in the multi- 
fractal approach not only by an infinite set of exponents, but also by an 
infinite hierarchy of universal ratios. The analogous quantities are known 
to be universal in critical phenomena. Here they provide a convenient addi- 
tional way to access experimentally the universal properties of the trajec- 
tories. All of the above properties are summarized in Eq. (13) by a joint 
probability distribution for the positive integer moments (integer q) which 
contains the information about the multifractal structure of the trajectory. 
This joint probability distribution is independent of the a priori probability 
for the starting point, is universal, and clearly exhibits the infinite set of 
exponents, as well as the parameters which control the characteristic time 
~, Eqs. (23) and (26), and the quantities which obey gap scaling [Eq. (19)]. 

Even without the model provided by critical phenomena, the 
probabilistic approach suggests itself naturally because of the strong 
dependence of the amplitude of multifractal moments on the starting point. 
In the usual approach, one always takes the inflection point of the map as 
the starting point. Although this approach is conceptually valid, one has to 
consider the practical problem of determining this point in experiments 
with an accuracy which becomes arbitrarily large at the critical point. 
Whereas the value of the exponents does not depend on the starting point, 
there is further universal information contained in the dependence of the 
amplitudes of the multifractal moments on the starting point, but it is not 
practical to try to determine this dependence, illustrated in Fig. 3. Curves 
such as these are indisputably better characterized by their statistical 
properties. Besides the lack of self-averaging of the multifractal moments at 
the critical point, the functions (Jq(F,,, x~) of Fig. 3 have no limit as n goes 
to infinity. Taking the averaged multifractal ratios is a statistical way to 
bypass these difficulties while retaining universal information which is 
shown in II to be related to the spectrum. 

Very irregular variations are generic of a pointwise characterization of 
the scaling structure. For example, Feigenbaum's scaling function (2~) has a 
rich self-similar structure. Experimentally, (3) the envelope of this function 
seems accessible, but the above point of view could add to the multifractal 
approach a test of other universal properties (amplitude ratios) of the 
scaling structure which, we contend, would be much easier to carry 
through with great accuracy than a measurement of Feigenbaum's scaling 
function. 

In the crossover regien, the averaging is over phase-locking intervals 



634 Fourcade and Trembiau 

in the case of periodic orbits and over starting points of the iterations in 
the case of irrational orbits. The latter procedure is in fact a limiting case 
of the first one. Averaging over phase-locking intervals could probably be 
extended to averaging over intervals of fixed period in the case of the 
period-doubling route to chaos. In the present case, it has been shown that, 
as in critical phenomena, there exists in the crossover region a unique 
characteristic time, which can be defined within the multifractal framework, 
and which marks the borderline of the critical region. As in critical 
phenomena, this time scale is concomitant with the concept of universality. 
The study presented in the last section is a more general alternative to the 
analysis of Arneodo and Holschneider, (2~ who characterized the crossover 
by a Taylor expansion of the critical exponents with respect to one control 
parameter along one eigendirection. Crossover functions are more usual 
than parameter-dependent exponents (crossover functions also appear in 
the characterization of locking intervals; see, e.g., ref. 22). The present 
paper, moreover, showed that the set of ~(q) is accessible in the 
neighborhood of criticality by techniques which are standard in the finite- 
size scaling analysis of critical points [Eq. (29) and Table III]. Some of the 
applications of the present approach to the case of period doubling have 
been verified, but none of the results are presented in the present paper. We 
would like to encourage other researchers to purse that line of inquiry. 

APPENDIX  

Even though the f(c~) function does not play a special role in our 
approach, we would like to introduce this function in a way which is 
equivalent to the traditional one, (5) but which is more natural within our 
approach. This is a transposition of the results of ref. 23. It suffices to 
remark that from the definitions of Eqs. (6), (4), and (10) we have 

1 
Mq(fn, xx)=Aq(fn, x l ) f  ,+(q)-l=fo dllqP(x~,l, fn+~) (A1) 

By a change of variables and with the definition 

P(xl ,  l, F~+ ~) dl- [P(Xl, - l n  l, Fn+ 1) d ( - l n  l) 

we obtain 

X1) F n + ( l q ) -  1 = t ~~ Aq(Fn, 
Jo 

d ( - I n  l) exp[ - q ( - I n  l)] P(xl,  - I n  l, F,,+ t) 

(A2) 
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The multifractal moments are thus the Laplace transform of the probability 
P. Using the Bromwich inversion formula for the Laplace transform, one 
can invert Eq. (A2) to obtain the scaling properties of P itself. To simplify 
the notations, we denote the function Aq(F~, xl) as Aq. We have 

P(x, ,  - l n  l, F.+ i) 

ff +i~ dq A F ~(q) = - -  1 c q (  - - I n  l )  

-i~ 2~i q n+1 

= Fn~,  exp lnFn+l ( - -~ (q )+  
io~ 

- l n  l in Aq ] 
- - _ [ _ _ _  

qln Fn+l In Fn+ 1 (A3) 

where i 2 - - 1 .  From its definition as a Laplace transform in Eq. (A2), 
- r ( q )  is an analytic function of q for Re(q)>0.  General theorems on the 
convexity of the logarithm of the moments of a probability distribution ~15~ 
tell us that ln[AqF~+ (q) 1] is a convex function of q. However, in the 
limit n --+ co, since Aq is a bounded and smoothly varying function of q 
(see Fig. 4), this means that the function - r ( q )  itself is convex and non- 
increasing. In the same limit, ln Aq/lnFn+l can be neglected in (A3). In 
the limit ~ = - l n  l/ln Fn+1 finite, In Fn+, infinite, one then deforms the 
contour to obtain, in the saddle point approximation, 

~(xl,~,F.+l)=C(Xl,~,lnFn+l)tz ' Ff(~) ~ n + l ~ n + l  (A4) 

where C(xl, ~, In Fn + 1) depends weakly on In Fn + 1 and f(~)  is the Legendre 
transform of -z(q) ,  i.e., Oz(q)/Oq=~; f(~)=q~-r(q) .  Let us note in 
passing that the result (A4) holds only in the limit where the logarithm of 
the time scale Fn +1 is large, whereas the usual asymptotic limit in critical 
phenomena, or here for the asymptotic form (4) of the multifractal 
moments, is obtained when the time scale itself is large. Hence in practice, 
the scaling regime where Eq. (A4) can be directly measured is difficult to 
attain. Note that a method to compute the function f(~)  without Legendre 
transforming z(q) has been recently proposed by Chhabra and Jensen. (24) 
Although their method allows one to get rid of the smoothing procedure 
for the experimental data, it cannot overcome the intrinsic difficulty of 
being in the regime where not only the time scale, but also its logarithm are 
large. 
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